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1. Summary 
 

At the First Stage of the Project the research on stability of the vacuum-arc plasma source 
provided with a conventional DC power supply with ballast resistor (SBR) was carried out. The 
experimental results were obtained in various modes of the source operation. Research was done 
using the existing laboratory facilities. The scheme and design of the main units of the switching 
power supply source (SPS, or PSS) and the SPS as a whole was developed. 
 At the Second Stage of the Project the experimental version of the switching power 
supply (SPS) was manufactured and tested. 

At the Third Stage of the Project the research on operation of the vacuum-arc plasma 
source provided with experimental version of the SPS and optimization of its characteristics was 
made. Comparison of the performance of the vacuum-arc plasma source supplied with SPS and 
SBR was carried out. Final version of the SPS was manufactured. Power value of 6 kW and the 
upper limit output current value of 120А were reached in final version of the SPS. 
 At the Fourth Stage of the Project the final version of the SPS was tested when operating 
with the vacuum-arc plasma source in the regimes of dielectric coating deposition. 
 
2. Introduction 
 Two main tasks were solving during the Project: optimization of vacuum-arc plasma 
generator and development the switching power supply suitable for nanocomposite tribological 
coating growth. Vacuum-arc plasma generator used for coatings deposition includes a vacuum-
arc plasma source and a power supply.  

An important characteristic of a vacuum-arc plasma source is stability of its operation in 
various modes specified by requirements of technological processes such as deposition of nano-
structural wear-resistant coatings. Stability of the arc discharge is usually characterized by 
frequency of spontaneous arc breaking [1]. It is necessary to note, that stability of an arc burning 
is determined by both parameters of the power supply (power reserve, open-circuit voltage, 
inductance and capacity of an external circuit) and the technological parameters of deposition 
processes (pressure and kind of the working gas; arc current; material of the cathode; magnitude 
and configuration of magnetic field; resistance of the coatings deposited on electrodes of the 
device). At the First Stage of the Project the results of research on stability of the vacuum-arc 
plasma source provided with a conventional DC power supply with ballast resistor (BR) were 
obtained. The experimental results were obtained in various modes of the source operation.  

Power supply is one of the main parts of the vacuum-arc plasma generator. It is necessary 
maintain the proper arc current, arc voltage, stable regime of the source operation during the 
process of coatings deposition. Arc voltage drop is of 30-40 V for such commonly used cathode 
materials as Ti, Al. But when the dielectric coatings are deposited, the arc voltage is increased to 
50-60 V. General purpose supplies are not able operate at so high voltage level. That’s why it 
was necessary to develop specialized power supply suitable for vacuum-arc plasma facility. 

DC power supplies with a ballast resistor (SBR) generally used in laboratory and industry 
practice have satisfactory characteristics for a feed of vacuum-arc plasma sources, however they 
are characterized by increased power losses in BR, large dimensions and weight. 
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In contrast with SBR the switching power supply exhibits efficiencies of between 70 to 
90 percent, regardless of the input voltage, because the switching regulator of the power devices 
operates in the full-on and cutoff states, and so power losses are small [2].  

In the world market there are a plenty of switched power supplies (SPS) for an arc 
feeding, having considerably smaller dimensions and weight [3]. Such power supplies are not 
needed in BR. However, all of them are intended for welding works at atmospheric pressure and 
do not provide stability of vacuum arc because of fast fluctuations of arc current and high voltage 
drop on the arc discharge.  

The purpose of the present Project is development of the scheme of the switched power 
supply for feeding a vacuum-arc plasma source which is suitable for deposition of nano-
structural non-conducting composite coatings. The principle of pulse-width modulation (PWM) 
is used in the scheme as more expedient. 

For estimation the suitability of the power supply developed it was necessary to compare 
performance of the vacuum-arc plasma source provided with such power supply and that of 
conventional one, commonly used in industrial vacuum-arc installations. Comparison of the 
performance of the vacuum-arc plasma source supplied with SPS and SBR was carried out at the 
Third Stage of the Project. Vacuum-arc discharge characteristics were measured in the regimes 
of deposition of conductive Al and non-conductive (dielectric) AlN coatings. Stability of the 
vacuum-arc plasma source operation was investigated. Frequency of casual arc breaking was 
measured. Power transferred from the SPS into the arc discharge was measured in various modes 
of the source operation. 
 
 
3. Methods, assumptions and procedures  
 
3.1 Experimental details of research on arc stability at deposition of conducting and non-
conducting AlN coatings 

Research on performance of the vacuum-arc plasma source provided with a conventional 
DC power supply with ballast resistor (BR) was carried out using the existing laboratory 
facilities. In Fig. 1 the schematic drawing of installation for coatings deposition with use of a 
filtered vacuum-arc plasma source is presented.  

The installation contains the vacuum chamber 1 with pumping-out system (not shown in 
the drawing), filtered vacuum-arc plasma source (FVAPS) 2, including consumable cathode 3 
placed in the case 4, stabilizing magnetic coil 5, the cylindrical anode 6 electrically isolated from 
the case 4, curvilinear plasma-guide 7 with input 8,9, output 10 and deflecting 11, 12 magnetic 
coils, power supplies of magnetic coils (they are not shown in the drawing), arc power supply 13 
with an adjustable ballast resistor (BR) 14, ampere-meters for measuring of an arc current Ic 15 
and anode current Ia 16, working gas feeding system 17 containing the adjustable valve 18 for 
feeding plasma source with Ar from the vessel 19 and the controllable valve 20 for introducing 
N2 gas into the  
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Fig.1. Schematic drawing of installation for coatings deposition. 
 
vacuum chamber from the vessel 21. The controllable valve 20 is driven by the system of 
automatic maintenance of set pressure of the working gas (not shown in the drawing). The 
magnitude and configuration of the magnetic field inside the cylindrical anode 6 could be 
adjusted varying magnitude and direction of a current in the coil 9.  

Aluminium was chosen as a material of the cathode that allowed deposition both metal 
Al, and dielectric AlN coatings. 

Following parameters were varied during Al and AlN coatings deposition and finding the 
ranges of plasma source stable operation: 
− pressure of Ar (at Al coatings deposition) PAr ; 
− arc current Ic; 
− argon gas concentration СAr in (Ar+N2) mix (at AlN coatings deposition); 
− magnitude and direction of the current I9 in the coil 9 (see Fig.1), determining the magnetic 
field magnitude and configuration inside the anode (the currents in all the rest magnetic coils of 
the plasma source are fixed). 
  For increase the stability of the vacuum-arc source operation at deposition of AlN 
coatings the working gas components were introduced separately: Ar gas was injected near to the 
cathode of the plasma source, and N2 gas – directly in the vacuum chamber. 

During investigation of the plasma source operation the following parameters were 
measured in various modes: 
− arc voltage drop Ua; 
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− anode current Ia at the fixed total arc current Iс; 
− frequency of arc breaking f. 
 Separate measurement of the anode current Ia and the total current of the discharge Iс is 
caused by the presence of the magnetic field in the filter. Thus the electronic current flows 
through two parallel circuits: from the cathode to the anode across a magnetic field lines and 
from the cathode to the grounded chamber along the magnetic field lines. As the anode is located 
near to the cathode, just the anode current plays a defining role in stability of the arc discharge. 
Varying the magnitude and configuration of the magnetic field in the anode it is possible to 
adjust currents flowing through these two circuits and so influence stability of an arc burning. 

For deposition of dielectric AlN coatings Ar+N2 mix was used as the working gas. As a 
rule, at filtered vacuum-arc AlN coatings deposition the mix pressure РAr+N2 ≈ 3·10-3 Torr was 
sustained. The choice of the working mix pressure is motivated by two reasons. On the one hand, 
at higher pressure the output ion current of the filter decreases. At smaller pressure the quality of 
AlN coatings worsens. Experiments were carried out at two fixed arc current values. The first 
one, Iс =55 A is chosen from condition of minimization of emission of macro-particles from the 
Al cathode and stable burning of the arc. The second one, Iс = 90 A is an average arc current 
value commonly used in vacuum-arc deposition processes. 

 
3.2 Development of the scheme of the switching power supply (SPS). Comparison with SBR 
(Supply with Ballast Resistor)  
 

Usual power supply with linear regulator operates by reducing a higher input voltage 
down to the lower output voltage linearly controlling the conductivity of a series pass power 
device (a ballast resistor (BR)) in response to changes in its load. As a result large voltage drop 
Vdrop across the BR with the load current Iload flowing through it arises. This headroom loss 
(Vdrop · Iload) causes the linear regulator to be only 30 to 50 percent efficient. 

The switching regulator of the power devices operates in the full-on and cutoff states. As 
a result either large current being passed through the power devices with a low “on” voltage or 
no current flowing with high voltage across the device. Consequently power losses within the 
supply are small. The average switching power supply exhibits efficiencies of between 70 to 90 
percent, regardless of the input voltage. 
Using pulse switching power supplies (SPS) is more preferable for a feed of the vacuum-arc 
plasma sources in comparison with usual low-frequency ones due to their following advantages. 
1. High coefficient of efficiency (up to 90 %).  
2. The compact dimensions. 
3. High efficiency and accuracy of an output current and voltage regulation.  
4. Availability the appropriate semiconductor power components considerably simplifies design 
of the SPS. 

There is a set of schemes of the SPS. However for output power values from kilowatt and 
higher it is more expedient to use the bridge scheme represented in Fig. 2.  
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Fig. 2. Bridge scheme of the SPS. 
 
 

 
 

Fig. 3. Block diagram of the SPS. 
 

Principle of operation of such power supply is following (see Fig. 3). 
The AC current of a network comes in the network rectifier with the filter where it is 

rectified and filtered, and then comes in the inverter.  
The SPS (see Fig. 2) will transform DC voltage U in AC one with peak value Uinv. Under 

influence of an external control signal the pairs of semiconductor series power switches К1, К4 
and then К2, К3 are alternately switched on and off. There are two distinct time periods which 
occur when the switches are on and off, ton and toff accordingly. The resistance of switches in the 
state ‘on’ is negligible quantity. So when the pair К1, К4 turns on, the input voltage U is placed 
directly across the primary winding of the transformer and drives the current I1 in it. Similarly at 
switching “on” the pair К2, К3, current I2 equals to I1, but opposite in direction, flows in the 
winding. Thus, on the secondary winding there appears voltage Uinv with peak values “+U·k” 
and “ - U·k ”, where k is a turn ratio  

k=W2/W1, 
where W1 is number of turns of a primary transformer winding, W2 is number of turns of a 
secondary one. 
 
From an output of the inverter the voltage Uinv comes in the output rectifier with the filter where 
it is rectified and filtered.  
Thus, on the SPS output there will appear DC output voltage of magnitude Uout: 
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 Uout = k·U·D,                            (1)   
  
 
where D is the duty cycle (D = ton/(ton + toff)).  
 
Apparently from the formula an output voltage of the power supply (at U = constant) depends 
only on the duty cycle value:  
 D=ton/T =ton·f ,                          (2) 
   
 
where ton - duration of the switches “on” state, T, f - repetition period and frequency of Uinv 
accordingly. 
 

The ton value can be varied within the limits from 0 up to (T - toff) where toff = 2·td - time 
interval along which all switches of the inverter are “off”. Presence td (so called “dead time”) in 
the formula for D is connected with finite value of the time commutating of the semi-conductor 
switches. Therefore in order to prevent occurrence of a through current in real inverter schemes 
the “dead time” is taken into account. For the majority of power switches td is in the range of 1 - 
5 μsec. From expressions 1 and 2 it is visible that adjustment of Uout value is possible in two 
ways: varying ton or f. The first way in power electronics is called pulse-width modulation 
(PWM), and the second one is pulse-frequency modulation (PFM). 

Optimized variant of regulation depends on the working frequency. From the past 
experience of designing of powerful pulse sources the lower limit of the frequency is 20 kHz. 
This lower value is determined first of all by dimensions of transformers and inductor coils. This 
value is increased inversely to working frequency of the SPS. The upper value we shall set is of 
50 kHz. It is limited first of all by performance of power switches. So for regulation of a current 
and a voltage over a wide range it is more expedient to use PWM. 

It is known, that duration of transient phenomena in a vacuum arc, caused by spontaneous 
variations of an arc voltage drop and arc current, is less than 1 μsec. Time of reaction of the 
designed power supply even at the maximal frequency 50 kHz cannot be less than 40-60 μsec. It 
is connected with the peculiarity of the feedback scheme. 2-3 cycles of switching of the inverter 
are needed for generating proper feedback voltage.  

In this connection for improving the transient performance of the power supply loaded 
with a vacuum arc and shaping the falling volt-ampere (V-A) load characteristic the additional 
ballast inductor coil is included in series with the primary winding of the pulse transformer.  

Estimation of the V-A characteristic of the power supply with a ballast inductor coil was 
made on base of an equivalent circuit shown in Fig. 4. 

 
 

Uin

R1LB

 
 

Fig.4. Equivalent circuit of the power supply with a ballast inductor coil. 
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Lb - ballast inductor coil; R1 - active load resistance reduced to a primary circuit. 
 
For estimation the output V-A characteristic of the power supply we shall take into account well 
known expression: 

 
2
1

2
L Rx
UI
+

= ,                              (3)  

 where U is input variable voltage,  XL is inductive impedance of the ballast inductor coil at the 

working frequency, R1 is the active load resistance reduced to a primary circuit: 
2

21 k
1RR ⎟

⎠
⎞

⎜
⎝
⎛⋅= , 

where R2 is the active resistance of load (arc), k is turn ratio. 
 

Substituting in the formulas the load resistor value (estimated from the arc current) and 
considering that U2 = U1·k, and I2 = I/k, we can estimate the load characteristic of the power 
supply. It is plotted as the curve 1 in Fig. 5.   
 

 
 

Fig.5. Estimated characteristic of the SPS. 
1 – SPS load V-A characteristic; 2 - curve of constant power (6 kW); 3 - line of the maximal 
output voltage; 4 - line of the maximal output current. 
 

As shown in Fig.5, without use of the ballast inductor coil the load V-A characteristic of 
the power supply having two regulators (a voltage and a current) looks like a rectangle, limited 
by lines of the maximal output voltage (a straight line 3) and the maximal output current (a 
straight line 4). It is easy to see, that without use of the ballast inductor coil the maximal output 
power will be 18 kW, that is three times exceeds the chosen nominal output power of the 
designed power supply. Therefore at long-duration SPS operation outside the region of ultimate 
load it will be either disconnected due to overheat, or destroyed. 

From the performance of the power switch transistors used in the scheme designed, and 
considering that switching of transistors occurs in a "rigid" mode, the working frequency is 
chosen nearby 27 kHz. Accordingly, the inductance of a ballast inductor coil should be of 20 μH. 
For XL calculated at the first harmonic of working frequency the falling shape of the load V-A 
characteristic will be realized (curve 1 in Fig. 5). 
   From Fig.5 it is clear, that the load characteristic of the source has falling shape with a 
vertical line 4 at current value of 120 A. From the curve 1 it is clear that the maximal output 
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power of a source in this case does not exceed 8 kW that is admissible overload of the power 
supply. At adjustment of the output current to be lower than its maximal value, vertically falling 
part of the load characteristic (a straight line 3) will be displaced to the left.  
 
3.3 The description of the SPS scheme and the power supply operation 
 

3.3.1 Basic elements of the scheme and their destination 
 
 Block diagram of the SPS is shown in Fig. 6. 

 
 
Fig. 6. Block diagram of the SPS. NRF - network rectifier with filter; INV - inverter; ORD - 
output rectifier with an inductor coil; VAP - vacuum-arc plasma source; AUT - module of 
automatics; REG - PWM regulator module; DRV - drivers; SEN - module of measuring 
instruments; IND - module of control and indication; INT - interface of remote control; Lb - 
ballast inductor coil; T - the pulse transformer. 
 

NRF contains: bridge rectifier, inductor coil of the network filter, filtering capacitors, 
starting three-phase relay, charging resistor, relay for shunting the charging resistor. 

Inverter INV contains: IGBT transistors (switches), snubber being placed across the 
primary winding of the transformer and snubber capacitors intended for protection of transistors 
from over-voltage. 

ORD contains diodes of the output rectifier and an output inductor coil. 
The AUT module consists of circuit plate of automatics, thermal relay and current 

transformer. The circuit plate of automatics provides:   
1.   Turning on the starting relay, turning on the relay, which shunts the charging resistor 

with 3-4 sec delay after turning on the starting relay.  
2.   Turning on the PWM regulator module with 3-4 sec delay after shunting of charging 

resistor. 
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3.   Emergency shutdown of the SPS in case an overheating of power transistors and diodes 
or excess of an admissible current through a primary winding of transformer T. 

4.   Data transfer on control panel IND for mapping and on interface module INT. 
The module of measuring instruments (SEN) consists of the current-sensing device, voltage-

sensing device, voltmeter for measuring voltage on capacitors of the NRF module and amplifiers 
for voltage reduction for modules REG, IND and INT. 

Module SEN provides: 
1.   Measurement of the load current and voltage for mapping those on the control panel and 

for use in modules REG, IND and INT of the power supply. 
2.   Measurement of the voltage on NRF capacitors, comparison it with permissible limit and 

generation the signal on emergency shutdown of a power unit in case of over-voltage. 
All measuring instruments are electrically isolated from the power circuits of the SPS. 

Module REG consists of the clock generator which sets clock rate (working frequency) of 
PWM and INV operation. PWM itself consists of amplifiers of the voltage and current 
"mistakes", generator of voltage of saw-tooth waveform, and comparator. The comparator 
compares a voltage of saw-tooth waveform with an output voltage of amplifiers of "mistake" and 
on the base of comparison the module forms proper duration of PWM pulses. From an output of 
the comparator these pulses come in the scheme which generates para-phase pulses for control of 
the switches of the bridge inverter. 

The module of control and indication IND consists of the digital voltmeter and the 
ampere-meter for displaying the voltage and the current magnitude on the control panel.  

The control panel contains the control buttons “START”, “STOP” and “RESET”, the 
switch "SETUP-WORK", a potentiometer for regulation of an output current and the indicating 
light-emitting diodes (LEDs), glow of which represents the current status of the power supply. 
  Except for the modules represented on the block diagram there is a module of service 
power supply consisting of the power supply generating a DC voltage for a feed of AUT and 
REG modules, and the generator of a "meander"-shaped voltage with frequency of 40-70 kHz. 
“Meander” provides electrically isolated feed of DRV and SEN modules.  

 
3.3.2 Description of the power supply operation 

 
At turn on the SPS, an AC network voltage comes in the service power supply (not 

shown). Thus the DC feed voltage comes in all cardboards of AUT, REG, DRV, SEN, IND 
modules, and the green LED „POWER SPS” and digital LED indicators begin glow. After that 
the required value of the output current can be adjusted by regulator “I” at position “SETUP” of 
the switch "SETUP-WORK". 

After pressing "START" button the three-phase relay operates and AC network voltage 
comes in the rectifier bridge. The capacitors of the network filter are charging with rectified 
current flowing through the charging resistor. After 3-4 sec delay the relay for shunting the 
charging resistor operates. Then after further 2-3 sec delay the PWM scheme becomes operate, 
and duration of pulses which control the drivers of four semi-conductor switches K1-K4 of 
inverter INV becomes gradually increase. 

In case of failure of one or several power transistors, the cardboard of drivers AUT 
module generates the signal on switching-off the three-phase relay and switching-off the feed of 
a network rectifier. At the same time the red LED “ERROR” on the control panel becomes glow. 

At normal mode of operation of power transistors the inverter starts to generate AC 
voltage which is rectified and filtered and comes in the output of the SPS. Open-circuit voltage 
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of the SPS is of 150 V. This value is displayed on digital indicator "VOLTAGE". In this case 
PWM scheme generates the control pulses of maximal duration. 

At operation with the load (vacuum-arc source) PWM scheme adjusts proper pulses 
duration ensuring the maintenance of pre-set arc current value in the range of V-A characteristic. 
The value of the pre-set arc current is displayed on the digital indicator "CURRENT" at position 
“WORK” of the switch "SETUP-WORK".  
 

 
4. Results and discussion 

 
4.1.   Research on the arc stability at deposition of conducting Al coatings (SBR supply) 

 
 Fig. 7 (a,b) shows  the dependence of an arc voltage drop Ua and an anode current Ia on 
pressure of gas (argon) for the fixed arc current Iс = 55 A at two values of current in coil 9  (I9). 

a) 
 

b) 
 

Fig.7. Arc voltage drop Ua and anode current Ia versus argon gas pressure. Ic=55 A. 
 

Negative value of current I9 in the coil corresponds to its opposite energizing with respect to 
currents in other magnetic coils of a plasma source. During experiments the arc was initiated at 
Ar pressure of 2·10-3 Torr. Then Ar pressure was gradually decreasing till the moment of arc 
breaking. The shaded area on plots Figs.7, 8 corresponds to pressure range at which the arc can 
not be initiated. 

Fig. 8 (a,b) shows similar dependences for Iс =90 A. 
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a) 
 

b) 
 

Fig.8. Arc voltage drop Ua and anode current Ia versus argon gas pressure. Ic=90 A. 
 

Experimental points on curves Figs. 7, 8 correspond to the range of pressure at which the 
arc burns stably. At lower values of РAr the arc was extinguished and could not be initiated. Fig. 
7 reveals that decrease of Ar pressure from 1.7 mTorr down to 0.2 mTorr results in increase of 
the arc voltage drop from 27 V up to 55 V, respectively (Iс = 55 A, I9 = -1 A). The anode current 
varies slightly. Similar dependence is observed also for I9 = 0.2 A.  

It is worth to be noted, that in all experimental conditions the arc voltage drop at which 
the arc extinguishes is approximately equals to 55 ÷ 65 V. It is connected with the fact that the 
open-circuit voltage of the arc power supply is not sufficient for maintaining predetermined 
magnitude of the arc current. To improve vacuum-arc stability it is necessary to increase open-
circuit voltage of the power supply. However it will require increase of BR resistance that will be 
resulted in increase of losses of energy. 

Variations of the magnetic field inside the anode (by varying the current I9 in coil 9) 
causes more essential changes of the arc voltage drop Ua and the anode current Ia. 

Fig. 9 shows typical dependence of the arc voltage drop Ua and the anode current Ia on 
current I9 in the anode coil 9.  
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Fig.9. Arc voltage drop Ua and anode current Ia as functions of current I9 in the coil 9. 
 

Apparently from Fig.9 that the greater is the magnetic field inside the anode the greater is 
the arc voltage drop Ua and smaller the anode current Ia at the fixed arc current. Increase of the 
magnetic field in the anode (variation of current I9 from I9 =-1 A up to 0.2 A) causes increase in 
the arc voltage drop from 37 V up to 45 V. It is possible to explain such relationship as a result 
of increase in intensity of a longitudinal magnetic field inside the anode that makes arc current 
flow from the cathode to anode across magnetic field lines to be more difficult. Similar 
dependences are obtained for various Ar pressure. For example, decrease of Ar pressure from 2 
up to 0.4 mTorr at I9 =-1 A causes the arc voltage drop increase from 39 V up to 58 V.  

 
4.2. Research on the arc stability at deposition of non-conducting AlN coatings (SBR 

supply)  
 
The experiments show that at Ar pressure of 3·10-3 Torr the arc burns stably, the arc 

voltage drop is of about 35 V. At deposition of non-conducting AlN coatings Ar+N2 mix is used 
as the working gas. Increase in nitrogen concentration in the working mix results in the arc 
discharge instability that is expressed in spontaneous arc extinction. Fig. 10 (a,b) shows 
dependence of the arc voltage drop Ua, the anode current Ia, and also the frequency of the arc 
extinction f on Ar concentration CAr in Ar+N2 mix for various current values I9 in the anode coil 
9 and fixed arc current Iс =55 A.  

Fig. 11 (a,b) shows similar dependence for the arc current Iс =90 A. 
The adduced dependence show, that the arc extinction is observed at СAr < 53 % for Iс = 

55 A in an investigated range of current I9 variation. 
At an arc current Iс = 90 A stability of the arc discharge increases; arc extinction is 

observed at СAr < 20 %. Exception is the case of I9 = 0.2 A, corresponding to endpoint value of 
the investigated range of a magnetic field in the anode, at which stability of the arc discharge is 
broken at СAr ≤ 33 %. 

From these data it is obvious, that deterioration of stability of the arc takes place when the 
arc voltage drop Uа becomes higher than 40 ÷ 45 V in an investigated range of a magnetic field 
variations at the  arc current of 55 A. 

For the arc current 90 A deterioration of the arc stability occurs at greater values of Uа, 
i.e. when Uа = (50 ÷ 55) V.  

Deterioration of stability of the arc burning at small Ar concentration is apparently 
connected with formation of non-conducting AlN coating on the anode surface, resulting in 
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decrease of anode current Ia and simultaneous increase in arc voltage drop Uа. It should be noted, 
that the total pressure РAr+N2 was varied within the range of (2.8 ÷ 3.2) ·10-3 Torr at the 
experiments. The pressure variation was, probably, the main reason of the scattering of the 
critical value of Uа, which accompanied the arc unstable burning in Ar+N2 mix. 

 

a) 
 

b) 
Fig.10. Arc voltage drop Ua, anode current Ia and frequency of the arc extinction f versus Ar 
concentration CAr. Iс =55 A. 
 

a) 
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b) 
 

Fig.11. Arc voltage drop Ua, anode current Ia and frequency of arc breaking f versus Ar 
concentration. Iс =90 A. 
 
4.3 Description of the construction of the experimental variant of the SPS  
 

Sketch of the experimental version of the SPS is shown in Fig. 12. Appearance of some 
modules of the SPS is shown in Figs.13-14. Front and rear panels of the SPS are shown in 
Figs.15 and 16 accordingly. 
 
 
 
 
  
 

a)  
 
 
 
 
 
 
 
 
 

b) 
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c) 
 
 
 

 
 

 
Fig. 12. Sketch of the experimental version of the SPS (without the case). 

 
1- front panel; 2 – rear panel; 3 – bottom panel; 4 – air-cooling radiator with the IGBT power 
transistors; 5 – main plate; 6 – capacitors of the power supply filter; 7 – AC 50 Hz network 
inductor; 8 – output inductor; 9 – plates of the voltage and current sensors; 10 – air-cooling 
radiator for cooling the rectifier diodes; 11 – AC network rectifier; 12 – output voltage rectifier 
diodes; 13 – transformer; 14 – current-limiting inductor; 15 – control plate; 16 – voltage and 
current display plate; 17 – plate of measuring the voltage on the capacitors of the power supply 
filter. 
 

 
 

Fig. 13. Appearance of the control modules. 
 

1 – main plate; 2 – plate of the service power supply module; 3 – plate of the generator of  
"meander"-shaped voltage; 4 – plate of the pulse-width modulation (PWM) regulator module; 5 

– plate of automatics. 
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Fig. 14. Module of the bridge inverter with the IGBT transistors.  
 

1 – plate of the IGBT transistors; 2 – driver; 3 – snubber capacitor; 4, 5 – snubber plates; 6 – 
thermal relay. 
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Fig. 15. Appearance of the front panel of the experimental version of the SPS. 
 

1 – “On-off” switch; 2 – voltage and current displays; 3 – the output current “pre-
set/measurement” button; 4 – variable resistor for regulation of an output current;  

5 – control buttons (“START”, “STOP” and “RESET”), 6 - indicating LEDs.    
 

 
 

Fig. 16. Appearance of the rear panel of the experimental version of the SPS. 
 

1 – automatic circuit-breaker; 2 – three-phase four-wire cable; 3 – interface connector of remote 
control, 4 – electric fan; 5 – output clamps. 

 
4.4 Check and tuning the SPS. 
 
4.4.1 Check and tuning the SPS modules and plates. 

The unit of service power supply includes module of service power supply (see Fig. 13 
pos.2), the generator of a "meander"-shaped voltage (see Fig. 13 pos.3) and other elements (pulse 
transformers, rectifiers and voltage stabilizers) disposed on the driver plates and current and 
voltage sensors plates.  

Check and tuning were done in the following way:  
- Tuning the service power supply plate. The plate alone was supplied with AC 50 Hz network 
voltage of 50-220 V. At the beginning of testing the power supply voltage was limited by the 
load-limiting resistor at the level of 50 V. Output voltage on contacts of the power chip was 
monitored by the oscilloscope.  
Output voltage of the service power supply plate was registered by the voltmeter. At the end of 
testing the power supply voltage was increased to 220 V, and load-limiting resistor was shunted.  
Output voltage of the service power supply was tuned to 15 V, load current was tuned to 2.5 A. 
- Tuning the "meander"-shaped voltage plate. DC 15 V voltage power supply was used during 
tuning the plate. Clock rate of the control chip was set at 60 kHz. Overload protection of the 
"meander"-shaped voltage plate was tuned to operation threshold of 1 A.    
- Check and tuning the overall supply plates as an assembly. During check and tuning the service 
power supply plate was supplied with AC voltage 220 V 50 Hz (see Fig.13 pos.2). Output 
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voltage of the supplies was checked by the voltmeter, and that of the "meander"-shaped voltage 
plate by the oscilloscope.  
4.4.2. Check and tuning the system of automatics. 

System of automatics is intended for realization the algorithm of SPS switching on, 
switching off and emergency shutdown. It consists of the circuit plate of automatics (Fig.13 
pos.5), control plate (Fig.12с pos.15), the charging resistor and the relay of shunting the charging 
resistor. Check and tuning was carried out at de-energized AC network rectifier. Execution 
algorithm was checked on operation of relay of shunting the charging resistor and onset the 
output voltage of circuit plate of automatics which permits PWM regulator module and so the 
SPS operation.  
 
4.4.3. Check and tuning the protection circuit.  

Protection circuit is intended for switching-off the SPS in emergency condition. It 
consists of:  
- current transformer plate intended for the scheme protection in case of crossing the threshold of 
permissible value of the current in primary winding of the pulse transformer;   
- voltmeter for measuring voltage on capacitors of the network rectifier with the filter (NRF) 
module for protection the scheme in case  of  inadmissible fluctuation of the AC network 
voltage;  
- thermal relay for protection the powerful transistors and diodes against overheating; 
- scheme, disposed on the plate of drivers, intended for switching-off the SPS in case of failure 
the powerful transistors. 

Tuning the protection schemes and voltmeter plate for measuring voltage on capacitors of 
the NRF module was carried out under supplying the network rectifier of the SPS with single-
phase AC voltage. The voltage was varied from 30 V to 220 V. Check the current protection 
scheme was carried out at decreased level of output power, namely 1 kW.  

Protection scheme was tuned to the operation below the threshold value (270 V) of the 
voltage on capacitors of the NRF module. 

Simulation of the protection scheme operation in case of overheating was checked by 
disconnecting the thermo relay circuit. 

Failure of the powerful transistor was simulated by disconnecting the circuit collector-
emitter at de-energized AC network rectifier.   
 
4.4.4. Tuning the elements of the voltage and current feedback coupling. 

The elements of the feedback coupling include: the plate of the PWM regulator, the plates 
of the current-sensing and voltage-sensing devices and amplifiers of the sensing signals disposed 
at the main plate. 

Tuning was carried out through two stages: 
a) The first was done at de-energized AC network rectifier:  
- Tuning the synchronizing clock of the PWM regulator to 25 kHz frequency. 
- Check the PWM regulator with the feedback. The voltage and current feedback coupling 
signals were simulated by the voltage of separate supply. The output PWM regulator pulses were 
registered by the oscilloscope. 
b) The second was done at energized AC network rectifier and with resistive load at reduced 
output power of the SPS (about 1 kW).  
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Tuning the current feedback coupling elements was done in the following way. Set-
pointed reference voltage proportionate to pre-set current value was varied by the variable 
resistor 4 (see. Fig.15). The voltage came from the main plate and was applied to input of the 
amplifier of the current "mistake" disposed on the plate of PWM regulator. Signal from the 
sensor of the SPS output current was tuned so to bring pre-set current value in correspondence 
with output one.  

 Tuning the voltage feedback coupling elements was done in the same way, with the 
difference that the reference voltage was not varied and corresponded to output voltage value of 
150 V. 
 
4.4.5. Tuning the schemes of voltage and current indication. 

The schemes of voltage and current indication are the digital voltmeters with upper input 
value of 2 V. This value should corresponds to readings of 200 V for voltmeter and 200 A for 
amperemeter. Signals from the current-sensing and voltage-sensing devices are amplified. 
Scaling schemes include amplifiers and voltage dividers. Tuning the current and voltage displays 
readings was carried out by using as norm the readings of standard amperemeter and voltmeter, 
connected to the output of the SPS. 
 
4.4.6. Check the powerful circuits of the SPS.  

The network rectifier of the SPS was supplied with single-phase AC voltage. The voltage 
was varied from 30 V to 220 V. Oscilloscope was used for recording the waveforms of the 
voltage pulses on the collector-emitter contacts of the power transistors and the current pulses on 
the plate of the current transformer. Output voltage and current of the SPS were monitored too. 
The measurements were carried out at no-load operation and under resistive load.  
 
4.5 Test the experimental version of the SPS.  

The SPS connection to three-phase 380 V 50 Hz AC network during the test is realized 
according to the scheme Fig. 17.   

 
Fig.17. SPS connection to three-phase 380 V 50 Hz AC network (a,b,c – phase wires). 

 
The phase wires are connected to the clamps a, b, c of the network rectifier (see Fig. 12c – 11). 
Clamp d is connected to the “+” terminal lead of the network filter capacitor C (see Fig. 12b – 6), 
and “-” terminal lead of the C is grounded. 
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Powerful variable resistor was used as the load of the SPS. The synchronizing clock rate 
of the PWM regulator was set at 25 kHz. Pre-set value of the output current (set with the variable 
resistor 4, Fig.15) was chosen at the level of 110 A.  

Load characteristics of the SPS are shown in Fig. 18. Points on the plot correspond to the 
values of the load resistor in the range from 0.3 Ohm to 3.3 Ohm. 

 
 

Fig. 18. Load volt-ampere characteristics of the SPS. Inductance of the current-limiting inductor 
is 27 μH (-●-) and 19 μH (- -). 

 
Apparently from Fig.18, volt-ampere characteristic is nearly linear. Earlier (see Fig.5) the 

SPS load V-A characteristic was calculated on the first harmonic of working frequency. 
Difference in shapes of calculated and measured characteristic can be explained by two reasons.  

The computation was carried out in the assumption of sinusoidal form of the working 
frequency (only first harmonic was taken in account).  

Equivalent circuit was supposed to be “ideal”: voltage loss in the wires and power 
semiconductor elements, non-linearity of the transformer, spurious capacitance and inductance 
were not taken into account. 

Peak power achieved was of 4.5 kW at working frequency of 25 kHz and inductance of 
the current-limiting inductor of 19 μH. 

The tests of the experimental version of the SPS revealed emergency switching off the 
SPS at loaded power over 4 kW and current above 100 A after 5-10 minute of operation. The 
reason was inadequate cooling of the bridge circuit of the rectifier diodes (see Fig.12c pos.10) 
and switching off the SPS as a result of the operation of the thermal relay.  
This defect was eliminated by improving rectifier diodes cooling (using more powerful fan and 
improving design of cooling system). 
 
 

4.6   Research on stability of the vacuum arc plasma source supplied with the SPS at 
deposition of conductive Al coatings  
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The measurements were carried out according to the follow scheme. Pre-set value of the 
output current (set with the variable resistor 4, see Fig.15) was chosen at the level of 55 A or 90 
A. The pressure of Ar was set at P=2·10-3 Torr and then the vacuum arc was ignited. Next the 
pressure was decreasing stepwise up to the moment of arc breaking. At fixed Ar pressure the 
values of the arc voltage drop Ua and the anode current Ia were measured. Fig. 19 (a,b) presents 
the dependence of the arc voltage drop Ua and the anode current Ia on pressure of gas (argon) for 
the fixed arc current value of Iс = 90 A at two values of current in coil 9  (I9 = -1 A and 0.2 A). 
 

  a)       b) 
 

 
c)       d) 

 
Fig.19. Dependence of the arc voltage drop Ua and the anode current Ia on working gas (argon) 
pressure at deposition of conductive Al coatings. Vacuum arc plasma source is supplied with 
SPS (a,b), with SBR (c,d). 
 

Points in the plots of Fig.19 are placed in the pressure region of stable arc burning. 
Crosshatched region in the plots shows the pressure range in which the arc is broken and can’t be 
ignited. Apparently from Fig.19 the shapes of the curves in the plots are similar for supplying the 
plasma source both with the SPS and SBR. However the plasma source can operate at lower 
pressure values when supplying with the SPS than the SBR (compare Fig.19b and 19d). In case 
the magnetic field strength in the anode is low (I9= -1 A) difference in minimal pressure values at 
which the arc burns stably is not great (Fig.19a and 19c). 

The smaller pressure, the greater arc voltage drop Ua, the more intensive regime of supply 
operation is, nearly the ultimate power. The data obtained confirm efficiency of the SPS 
developed when operated in ultimate regimes. 
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4.7   Research on stability of the vacuum arc plasma source supplied with the SPS at 
deposition of non-conductive AlN coatings   

 
As it was noted earlier, for deposition of dielectric AlN coatings Ar+N2 mix was used as 

the working gas and the pressure of the mix was РAr+N2 ≈ 3·10-3 Torr. The experiments carried 
out during the 1st Quarter have shown, that at Ar pressure of 3·10-3 Torr the arc burns stably, the 
arc voltage drop is about 35 V. Addition of nitrogen in a working mix results in the arc discharge 
instability that is expressed in casual arc breaking. In Fig. 20 (a,b) the dependence of the arc 
voltage drop Ua, the anode current Ia, and also the frequency of arc breaking f on Ar 
concentration in Ar+N2 mix are presented for various currents in the anode coil I9 and fixed arc 
current Iс =90 A.  

a)       b) 
 

c)       d) 
 

Fig.20. Dependence of the arc voltage drop Ua, the anode current Ia and arc breaking frequency f 
on Ar concentration in Ar+N2 mix at deposition of non-conductive AlN coatings. Vacuum arc 
plasma source is supplied with SPS (a,b), with SBR (c,d). 
 

For comparison in Fig.20c and 20d similar curves are presented measured with SBR 
supply. Comparing Fig.20a and 20c one can see that arc breaking takes place at CAr < 20% both 
with SPS and SBR supplies. (The dependence is obtained in the same mode of arc operation: 
Iс=90 A, magnetic field strength in the anode is determined by the value of I9= -1 А). So at low 
magnetic field and favourable conditions for arc burning both SBR and SPS supply assures 
stable operation of the vacuum arc plasma source at Ar concentration in Ar+N2 mix more than 20 
%. 

At higher magnetic field (the current value in coil 9 is I9= 0.2 A), when the arc burning is 
hindered, SPS assures stable operation of the vacuum arc plasma source at Ar concentration in 
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Ar+N2 mix more than 20 %, whereas SBR does it at more than 33% Ar concentration (compare 
Fig.20b and 20d). 

From the dependence presented it is obvious that deterioration of arc stability at the arc 
current Ic=90A occurs when the arc voltage drop becomes greater than 45-50 V. 

Observable in experiments deterioration of an arc burning stability at small Ar 
concentration in mix Ar+N2 is apparently connected with formation of non-conductive AlN 
coating on the surface of the anode, resulting in increase of the anode – cathode electrical 
resistance, decrease of the anode current Ia and simultaneous increase in the arc voltage drop Uа. 
High value of the open circuit voltage of the SPS assures more stable operation of the vacuum 
arc plasma source in hindered regimes of arc burning. 

It is necessary to note, that total pressure РAr+N2 was varied within the range of (2.8 - 3.2) 
·10-3 Torr at carrying out the experiments. The pressure variation was probably the main reason 
of data scattering of the value Uа, at which the arc breaking was happened in Ar+N2 mix. 

 
4.8 Performance of the SPS loaded with the vacuum arc plasma source 

 
Earlier (See 4.5) the characteristics of the SPS loaded with the active resistor were measured. 

Now the characteristics of the SPS loaded with the vacuum arc plasma source were measured at 
different regimes of operation. Investigations revealed that the electrical power transferred by the 
SPS in the arc discharge is varied in the range of 2-5 kW depending on working gas pressure and 
pre-set value of the arc current. Dependence of the electrical energy transferred by the SPS in the 
arc discharge on argon pressure at pre-set current value of 90 A is presented in Fig. 21. 

 

 
 
Fig.21. Dependence of the power transferred by the SPS in the arc discharge on argon pressure at 
pre-set current value of 90 A. 

 
Power W was calculated on measured values of the arc current (cathode current Ic) and 

arc voltage drop Ua : W=Ic·Ua.  
Stability of the arc current keeping is illustrated by Fig.22. 
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Fig.22. Dependence of the arc current (cathode current Ic) and arc voltage drop Ua on argon 
pressure at pre-set current value of 90 A.  
 
From Fig.22 it is obviously that the SPS stabilize the arc current at the pre-set value of 90 A at 
overall range of pressure investigated, except the lowest values. At pressure value of 0.1 mTorr 
when the arc voltage drop is increased and power transferred by the SPS in the arc discharge is 
approached to ultimate level of 6 kW, minor alteration of the arc current takes place.  
 
4.9 Characterization of the final version of the SPS 
 
4.9.1 The main differences between the experimental and final versions of the SPS. 
 
 

 
 

 
 

a)  
 

 
 
 
 
 
 
 
 
 
 
 

b)  
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c) 
 
 
 
 
 
 
 
 

Fig.23. Sketch of the final version of the SPS. 
1- capacitors of the power supply filter; 2 – air-cooling radiator with the IGBT power transistors; 
3 – snubber capacitors; 4 – output voltage rectifier diodes; 5 – air-cooling radiator for cooling the 

rectifier diodes; 6,7 – air-cooling fans. 
 

The tests of the experimental version of the SPS revealed insufficient cooling of the 
power semiconductor devices (transistors of the bridge inverted rectifier and diodes of the output 
rectifier). 

For eliminating this deficiency and decreasing the temperature of semiconductor load-
bearing elements the following actions has been made in final version of the SPS: 
- air flow rate through the radiators 2, 5 was increased. The ventilating fan with productivity of 
200 m3/h was replaced by two ventilating fans 6 and 7 (see Fig. 23) of 300 m3/h each; 
- the width of radiators 2 and 5 was increased from 120 mm up to 165 mm; 
- for more efficiency of power diodes cooling they have been replaced at the edge of a radiator, 
near to the input of cooling air flow. 

Besides during trials of the experimental version of the SPS the temperature of the 
snubber capacitors 3 (see Fig. 23) was increasing up to 50 ºC. The possible reason was high level 
of current pulsations. When capacity of the snubbers was increased from 1.2 up to 1.6 mF their 
temperature did not exceed 40 ºC.  

For minimizing the inductance of the connecting wires, the capacitor bank of the supply-
line filter 1 has been located more close to snubber capacitors 3 that also allowed reduce the 
level of pulsations.  
  Tests of the experimental variant of the SPS with the vacuum-arc plasma source have 
shown, that the amplitude of the surge voltage pulses on the diodes of a rectifier diode bridge can 
reach 300 V (see Fig. 24), at a peak voltage permissible for these diodes of 400 V. 
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Fig. 24. Waveform of the voltage on the rectifier diodes when the SPS is loaded with the 
vacuum-arc plasma source.  

 
For smoothing these pulses the capacitance of the snubber capacitors have been increased 

from 0.01 μF up to 0.1 μF. It has allowed reduce the amplitude of the pulses on 20-30 V (i.e. on 
30 % from the initial value). 
 
4.9.2 Adjustment and trial of the final version of the SPS loaded with the active resistor (BR).  

The adjustment procedure was the same as reported earlier in 4.4.  
Resulting voltage-current characteristics for synchronizing clock rate f of the PWM 

regulator of 25, 30 and 32 kHz are presented in Fig. 25. 
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Fig.25. Load volt-ampere characteristics of the final version of the SPS. The synchronizing clock 
rate f of the PWM regulator is 25 kHz, 30 kHz and 32 kHz. Dashed-line is the curve of constant 
power (Р=6 kW). 
  

Apparently from the voltage-current characteristics in Fig.25 the optimum value of the 
synchronizing clock rate f of the PWM regulator is 30 kHz. Such performance ensures the 
operation the SPS within the limits of a permissible power (up to 6 kW). At frequency f=25 kHz 
the output power can attain 6.5 kW and call an overload of the power supply. The SPS voltage-
current characteristic for f=32 kHz is situated below the curve of constant power (of 6 kW). In 
this case a voltage drop on a ballast inductor restricts the output power of the SPS at the level of 
5.5 kW. 

During trials temperature of the housing of the load-bearing elements (power transistors 
and the output rectifier diodes) were measured. Measurements were carried out at the peak SPS 
parameters: output current of 120 A and power of 6 kW. The temperature of these devices did 
not exceed 50 ºC. The temperature of the snubber capacitors did not exceed 40 ºC. 
 
4.9.3 Performance of the final version of the SPS loaded with the vacuum arc plasma source. 

The characteristics of the final version of the SPS loaded with the vacuum arc plasma source 
were measured at different regimes of operation. The electrical power transferred by the SPS in 
the arc discharge was varied in the range of 3-5 kW depending on working gas pressure and pre-
set value of the arc current. Dependence of the electrical energy transferred by the final version 
of the SPS in the arc discharge on argon pressure at pre-set current value of 90 A and 120 A is 
presented in Fig. 26. 
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Fig.26. Dependence of the power transferred by the final version of the SPS in the arc discharge 
on argon pressure at pre-set current value of 90 A (1) and 120 A (2). 
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Power W was calculated on measured values of the arc current (cathode current Ic) and 

arc voltage drop Ua : W=Ic·Ua.  
According to the Work Schedule the final version of the SPS was tested when operating 

with the vacuum-arc plasma source under dielectric coating deposition. Research on stability of 
the vacuum arc plasma source supplied with the final version of the SPS was carried out at 
deposition of non-conductive AlN coatings. Ar+N2 mix was used as the working gas and the 
pressure of a mix was РAr+N2 ≈ 3·10-3 Torr. Stability of the vacuum arc plasma source operation 
was found to be the same as in case of supplying with the experimental variant of the SPS (see 
4.7). 
 
5. Conclusions 

 
  Research on stability of a filtered vacuum-arc plasma source operation with Al cathode 
provided with the standard power supply with a ballast resistor (SBR) has been carried out at 
deposition of both conducting metal and non-conducting dielectric coatings. 

It has been shown, that at deposition of conducting Al coatings the plasma source 
operates stably at pressure РAr≥0.3·10-3 Torr (Iс =55 A) and at РAr≥0.4·10-3 Torr (Iс =90 A) in an 
investigated range of magnitudes of the magnetic field inside the anode. Thus the maximal value 
of the arc voltage drop Uа changed in range (52 ÷ 68) V at Iс =55 A. and Uа = (49 ÷ 65) V at Iс 
=90 A. At РAr=2·10-3 Torr the arc voltage drop Uа decreased down to Uа = (35.5 ÷ 39.5) V.  

Influence of the magnetic field inside the anode on stability of the vacuum-arc plasma 
source operation was investigated. At variation of current in the coil 9 (and accordingly the 
magnetic field inside the anode) within the limits of I9 = (-1 ÷ 0.2) A the arc voltage drop Uа at 
the arc current Iс of 55 A and pressure РAr=0.4·10-3 Torr varied in range of Uа = (46 ÷ 65) V. At 
the arc current of 90 A and variation of the current in the coil 9 within the limits of I9 = (-1 ÷ 0.2) 
A the range of the arc voltage drop was Uа = (50÷65) V for РAr=0.4·10-3 Torr, and Uа = (37÷43) 
V for РAr=2·10-3 Torr. 

Research on stability of the source operation in various modes at synthesis dielectric AlN 
coatings were carried out. 

It was shown, that at total pressure of Ar+N2 mix РAr+N2=3·10-3 Torr stability of burning 
of an arc depends both on Ar percentage in the mix, and on arc current Iс. In particular it was 
shown, that at Iс =55 A the arc is stable, if Ar concentration in Ar+N2 mix is greater than СAr= 53 
% in a range of (-1 A ÷ 0.2 А) variations of a current in coil I9. At the arc current of 90 A the arc 
stability was provided at lower Ar concentration in the mix: СAr≥20 % at I9 = (-1 ÷ -0.6) A and 
СAr≥33 % at I9 = (-0.2 ÷ 0.2) A. 

The assumption was made, that deterioration of stability of an arc burning at small Ar 
concentration in Ar+N2 mix is connected with formation of non-conducting AlN coating on a 
surface of the anode, resulting in decrease of the anode current Ia and simultaneous increase in 
the arc voltage drop Uа.  

The scheme and design of the main units and the SPS as a whole was developed. The 
experimental version of the SPS was manufactured and tested. Peak power of 4 kW and current 
of 105 A was achieved in the load (active resistor of 0.3 Ohm). On the base of the data obtained 
debugging and modifications were made. Cooling of the rectifier diodes was increased and the 
current-limiting inductor with lower inductance was used to provide proper heat regime of power 
elements and achieve planned power of 6 kW.  
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The performance of the vacuum-arc plasma source supplied with the experimental 
version of the SPS was investigated. Vacuum-arc discharge characteristics were measured in the 
regimes of deposition of conductive Al and non-conductive (dielectric) AlN coatings. Stability of 
the vacuum-arc plasma source operation was investigated. Frequency of casual arc breaking was 
measured.  

Comparison was made of the performance of the vacuum-arc plasma source supplied 
with SPS and SBR in the regimes of deposition of conductive Al and non-conductive AlN 
coatings. SPS was shown to provide stable vacuum arc source operation at lower Ar pressure 
than SBR at deposition of the conductive coatings. In the regimes of deposition of non-
conductive AlN coatings the arc with SPS supply burns at lower Ar concentration value in 
Ar+N2 mix (20% instead of 33% with SBR supply), that is at highest concentration level of 
nitrogen in the working mix. 

The value of the electrical power transferred by the SPS in the arc discharge was 
measured in various modes of the source operation. It was demonstrated that the power value 
was varied in the range of 2-5 kW depending on the working gas pressure.  

Stability of keeping the pre-set value of the arc current was explored. It was clarified that 
the SPS keeps up the pre-set current value with high accuracy. Only minor alteration of the arc 
current takes place at pressure value of 0.1 mTorr when the arc voltage drop is increased and 
power transferred by the SPS in the arc discharge is approached to ultimate level of 6 kW. 

Final version of the PSS was manufactured and tested. 
  Trials of the final version of the SPS loaded with BR have shown that modernization of 
the experimental version of the SPS permitted: 
- considerably reduce temperature of power semiconductor devices down to 50 ˚С, and that of 
the snubber capacitors to 40 ˚С; 
- reduce the amplitude of a surge voltage pulses on the power diodes on 20-30 V; 
- attain an optimal voltage-current characteristic of the SPS. 

When optimization of the design was done, then reliability of operation, planned power value 
of 6 kW and the upper limit output current value of 120А were reached in final version of the 
SPS.  
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List of symbols, abbreviations and acronyms 
BR - ballast resistor  
SBR - power supply with ballast resistor  
SPS, or PSS - switching power supply source  
PWM - pulse-width modulation  
PFM - pulse-frequency modulation  
FVAPS - filtered vacuum-arc plasma source 
Ia - anode current  
Ic - arc current 
Iload - load current  
СAr - argon gas concentration in (Ar+N2) mix 
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PAr - pressure of Ar  
f - frequency of arc breaking  
Ua - arc voltage drop  
AUT - module of automatics;  
DRV - drivers;  
IND - module of control and indication;  
INT - interface of remote control;  
INV - inverter;  
Lb - ballast inductor coil;  
NRF - network rectifier with the filter 
ORD - output rectifier with an inductor coil;  
REG - PWM regulator module;  
SEN - module of measuring instruments;  
T - pulse transformer; 
VAP - vacuum-arc plasma source.  
 
APPENDIX. USER’S MANUAL ON SPS 
 
 
A1. PURPOSE AND CAPABILITIES 
 
A1.1 The SPS power supply is general purpose power supply designed specifically for DC 
vacuum-arc plasma sources. 

The main features: 

- transformation input AC network power into output DC power. 
- measuring and displaying the output current and the output voltage on the load. 
- pre-set and adjusting the output current. 
- fault signalling in emergency state. 
 

A1.2. Environmental characteristics. 
Ambient temperature (operating)         of +10 °C to 40 °C.  
Humidity            of 0 – 85 % RH, non-condensing.  
Altitude           up to 2000 m. 

 Ambient should be non-dangerously explosive, without corrosion vapours and gases, 
without electro-conducting dust. 

Horizontality of the device rack should be inside the range of 0 - 5°. 
 
A2. TECHNICAL CHARACTERISTICS 

 

A2.1 Input network.    

Voltage          3 phase 220 V AC 

- Deviations of the input voltage (permissible)       +10, -15% 
- Frequency              50-60 Hz 
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A2.2 Output circuit parameters. 

- Output current            in the range   of   20-120 A 
- Maximal output current         120 A 
- Output current fluctuations           at the most 1 %  * 
- Open circuit voltage                150 V 
- Output voltage at output current of 120 A                  50 V  * 
- Output terminals are isolated from the ground. 
 

* on the active load 

 

A2.3 Maximal output power                             at the most 6 kW 

A2.4 Power factor (minimal value)            0.9 

A2.5 Efficiency (minimal value)                 90 % 

A2.6 Switching frequency           30 kHz 

A2.7 Regime of operation                         long-term 

A2.8 There is the display of the regimes of SPS operation 

A2.9 Cooling                 internal fans 

 

A2.10 Physical characteristics: 

Width          520 mm 

Depth          485 mm 

Height          270 mm 

Weight           31 kg 

 
 
A3. OPERATING INSTRUCTIONS 
 
A3.1. Ensure that facility AC input power is de-energized prior to connecting or 

disconnecting the input/output power cabels. 
 
A3.1.1. Connect the input power cabel to AC power network 220 V 50-60 Hz according to the 

Table A1. 
 
ATTENTION! THE POWER SUPPLY OPERATION AT DISCONNECTED GROUND 

WIRE IS FORBIDDEN! 
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A3.1.2. Connect the electrodes of the vacuum-arc plasma source to the terminals 2 (threaded 
studs, see Fig.A1) keeping the polarity: the cathode to the terminal “-“ and the anode to the 
terminal “+”. 

 
 
OPERATE WITH THE SAFETY GROUND! 
 
A3.2. “Turn on” procedure. 
A3.2.1. Energize the 220 V AC network power cable. Turn on the automatic circuit-breaker 1 

on the rear panel (see Fig.A1) then turn on the circuit-breaker “POWER” on the front panel. The 
LED “SPS” should begin to light, the cooling fans should begin operated and zeroes ** should be 
appeared on the displays “CURRENT” and “VOLTAGE”. 

 
ATTENTION! The LED “Fault” can begin to light sometimes owing to transient processes in 

the control system. In this case push the knob “Reset”, the LED “Fault” should be go out.  
 
The SPS is ready for operation. 
 
A3.2.2. Push and keep the knob “Setup” and adjust the desired pre-set value of the arc current 

by manipulating the tuning knob “Current Regulator”. 
A3.2.3. Push and then release the knob “Start” and wait for 2-3 sec. The LED “Force” should 

begin to light and the voltage value of 150±5 V should be displayed at the indicator “Voltage”.  
A3.2.4. If the LED “Fault” began to light, push and then release the knob “Reset” and then 

repeat the operation on point A3.2.3. 
A3.2.5. Turn on the arc ignition device 
A3.2.6. The pre-set value of the arc current one may adjust during the SPS operation. 
A3.2.7. If the arc current value isn’t displayed on the panel “CURRENT”, turn off the arc 

ignition device and the SPS (see point A3.3). 
A3.2.8. Check the discharge gap of the vacuum-arc plasma source and the circuit “anode – 

cathode”.  
A3.2.9. Repeat the “turn on” operation according to the point A3.2.1–A3.2.6. 
A3.2.10. If the fault of point A3.2.7 will be repeated, ask the SPS designer and manufacturer. 
 
** The digits in decimal position on the right of Zero can be lighted at the panel. 
 
A3.3. “Turn off” procedure. 
A3.3.1 Turn off the ignition device. 
A3.3.2 Push the knob “Stop”. 
A3.3.3 Over 2-3 minutes turn off the circuit-breaker “POWER”. Turn off the automatic 

circuit-breaker, located at the rear panel. 
 
 
A4. SOME CONCEVIABLE FAILURES 
 
A4.1. During the SPS operation in case of the output current overload or output power cables 

failure the LED “Fault” can be light. In such situation it is necessary turn off the SPS following 
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the procedure of point A3.3, make sure of serviceability of the load circuit and the output power 
cable and then push the knob “Reset”. (NOTE that if the knob “Stop” was not pushed during the 
switching off procedure execution, the SPS will turn on automatically after pushing the “Reset” 
knob). 

A4.2. At frequent occurrence of the failure of the type of A4.1 ask the SPS designer. 
 
A4.3. At overheating of the powerful elements of the device the LED “Overheating” begins 

to light. Conceviable cause may be the air fans failure or clogging of the air cooling channels. 
For solving this problem it is necessary check the fans serviceability and to clean the air-channel. 
NOTE that the thermo-sensor’s characteristic has hysteresis in time, that’s why the SPS becomes 
respond to the knob “Reset” only after cooling.  
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Fig.A1. Front and rear panels of the SPS. 
1 – automatic circuit-breaker; 2 – output terminals (M8 threaded studs). 
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Table A1. Designations and color of the wires of the input AC power cable. 
Ground  Phase “A” Phase “B” Phase “C” 
Black and white Yellow Blue Brown 
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